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LIMIT ANALYSIS OF CYLINDRICAL SHELLS
WITH LONGITUDINAL RIB REINFORCEMENTS

ANDRE Biront

Fcole Polytechnique, Montreal, Canada

Abstract—A cylindrical shell is considered with a cross-section composed of two rims, generally of different
thicknesses, separated by longitudinal ribs. The yield surface is derived using the strain mapping method for
the Tresca yield condition. The collapse pressure is then computed for the case of an open cantilever shell under
pressure. It is found that, for this particular problem, there is little savings of material to be made by use of
rib reinforcements, but that there may be some savings for other loading and end conditions where axial bending
has an important role.

NOTATION

area between two ribs

distance between two consecutive ribs
width of rib

height of rib

one half of thickness of inside rib

one hazlf of thickness of outside rib
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X2 longitudinal curvature rate
length of shell
= agoH? reference yield moment per unit length
average bending moment in the axial direction per unit length
= Mx/MO
= 200H, reference yield force per unit length
average longitudinal force in the axial direction per unit length
circumferential force per unit length
= No/Ny
internal pressure
= PR/N,
collapse (or yield) pressure
radius of shell
average shear force per unit length

T R )* T ( R ) 4

MoN, aoH \2H,

radial velocity, positive inward
= W/R
axial direction
radial direction, measured from the median surface of the inside rim, positive outward
=bla 0<ua<l
=D/H, 0gf<
=H,)H, 0<y<w
axial strain rate
average circumferential strain rate
= K.H,,
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o,  yield stress of material
o,  axial stress

g,  circumferential stress

¢ circumferential direction

INTRODUCTION

IN THE analysis of the behavior of plates and shells, it is generally assumed that the material
is isotropic and that the thickness is uniform. Over the last few years, however, several
studies [1-3] have been undertaken on anisotropic structures, produced by an arrangement
of isotropic material providing direction-dependent properties, such as in rib-reinforced
shells. Some methods in particular have been suggested to establish the yield surface for
the plastic analysis of these structures, and it is of interest to examine whether such an
arrangement may provide an improvement in the carrying capacity of the shell over results
obtained with a uniform thickness, the material volume remaining constant.

The aim of the present work is to evaluate, through limit analysis, how a rib-reinforced
design will affect the carrying capacity for a specific problem, that of an open cantilever
cylindrical shell subjected to pressure. For this purpose, longitudinal ribs are considered
with a cross-section as in Fig. 1. There are two rims, with different thicknesses, 2H; and
2H,, separated radially by ribs of height D and width b. The circumferential distance
between two consecutive ribs is a. The problem studied in [2] is therefore a special case of
the present study where the thickness of the outside rim is zero.

FiG. 1. Shell element.
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The geometrical configuration is nonsymmetric, and for the purpose of the analysis
must be reduced to a rotationally symmetric problem. We shall therefore consider approp-
riate average values of the circumferential deformation.

The approach used here is similar to that of [2]. The yield surface is derived using the
strain mapping method. Basic equations for cylindrical shells are recalled for use with
nonlinear yield conditions. The shell problem is then solved and conclusions are given
relative to whatever saving of material, if any, may result from these rib-reinforcements.
Other loading conditions are briefly discussed.

FORMULATION OF THE PROBLEM

Let us consider a cylindrical shell with a cross-section as in Fig. 1, where the stress
resultants N,, M,, N4, M, and T and the radial velocity W are shown in the positive
direction. The material of the rim and of the ribs is isotropic, incompressible, rigid perfectly
plastic with the yield stress . It is further assumed that this material obeys the Tresca
yield condition and that its constitutive equation is that of the plastic potential-flow law.

In order to simplify the presentation, only the case of zero axial force N, will be con-
sidered here. As usual, the influence of the transverse shear T on yielding is neglected, and
the circumferential bending moment M, is not a generalized stress since the mean circum-
ferential curvature rate is zero. Hence the yield surface may be expressed in dimensionless
form in terms of two stresses only, namely the circumferential force n and the average
axial bending moment m.

CONSTRUCTION OF THE YIELD SURFACE

The yield surface is obtained from the usual assumption of straight normals and from
the strain mapping method suggested by Onat and Prager [4], which is a consequence of
the plastic potential-flow law.

The Tresca criterion is expressed in terms of stresses o, and g, [Fig. 2(a)].

max{|o.], logl, |6 — 04|} < 0o. (1)

The plastic potential-flow law may be described in terms of a stress point (o,, 5,)
and a strain-rate vector (g, €4). For a non-zero vector, the corresponding stress point on
surface (1) must be such that the angle between this vector and any other vector inside the
surface is at least a right angle, the strain-rate vector being directed outwards.

It 1s thus possible, from any given distribution of ¢, and ¢4, to deduce the distribution
of o, and g,, and therefore to compute the generalized stresses. If, for example, ¢, and ¢,
are both positive, the corresponding stress point must be at corner B of the yield hexagon.
In this fashion, each of the six regions of Fig. 2(b) corresponds to a corner of the hexagon,
and the lines separating these regions correspond to the sides.

To obtain the yield surface in terms of the generalized stresses, it is necessary to consider
all possible combinations of distributions of ¢, and &,, ¢, being distributed uniformly
across the rims.
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F1G. 2. Tresca yield curve and associated strain rates.

In the ribs, the state of stress is uniaxial in the X direction. In the rims, af a distance Z
from the median surface of the inside wall, the sign of ¢, and ¢, and their relative values
are considered. Using Fig. 2, the stress distribution is then obtained.

In order to construct the entire yield surface, a total of fifteen cases must be studied.
Let us examine one case in detail, that of case 3 shown in Fig. 3, where two parameters
r and j are used to describe the strain rate distribution.

@) For Z > H, +D+{(1+j)H,, g5 < 0, &, > 0, |g > lg4]. This corresponds to corner
A of the yield hexagon in Fig. 2, and therefore in this region o, = ay, 64, = 0.

(b) For Hi+D < Z < Hy+D+(1+))H,, &, <0, &, > 0, |g,] < |ey]. This corresponds
to corner F, and o, = 0, 64, = —ayq.

(c) For H;+rD < Z < H,+D, ¢, > Qand, since the state of stress is uniaxial, 6, = .
(d) For Hy < Z < H,+rD, e, <0, thus o, = —0y.

(e) For —H, < Z < Hy, &, <0,¢, < 0. This corresponds to corner E of the hexagon
and Ty =04y = —0p.
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(b) STRESS DISTRIBUTION
FiG. 3. Typical strain rate and stress distribution (Case 3).

The stress distribution is thus as illustrated in Fig. 3(b), and the stress resultants are:

N, = éf ¢,dA = [(1—))Hya +(1—2Db—2aH]o,/a
A

M, = lf 6,ZdA = {(l—j)Hza[H,+D+(3;J)H2]
A

* g
-2 )
—2r
+(1—2r)DbH, + > Dzb} oo/a
H, H{+D+2H,
~H,y H,+D
The axial force N, being zero, a relation is easily derived between parameters r and j:
1 [2—-(1—=jp]
= &)
2 2B
where
o« = b/a B = D/H, v = Hy/H,. (4)
The follewing inequalities related to parameters r and j must be satisfied :
0<r<li
)

-1<j<1.
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Thus, from (3) and (5), we obtain the following limits for parameter j:

@) If fo < 2
() If pa—2y < -2
TG P (6a)
() If pu—2y > -2
Srsje1-2TR (6b)
(b) If o > 2
(1) If Ba—2y < =2
—1—@%2—)315 1. (6¢)
) If pa—2y > —2
—-1<j<l. (6d)

The generalized stresses may therefore be written in terms of one parameter j from

(2H4):

_ iy,

2
R-(1—jp)  R+0—jyB B« (1—j)*y* "

—m=2- L — %)y ]
m i + 5 + 1 +( =7+ 5
where
N, M, 8
—y n =

" 200H, ! ooH? )

and where the allowed values of j are given by equations (6)

Equations (7) define in parametric form one part only of the yield surface. All other
fourteen cases of strain rate distributions are studied in the same manner.

It turns out, from the overall analysis, that different cases are applicable depending on
the sign of the following four inequalities:
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The functions given in (9) divide a Ba vs. 2y plane into eight different regions, as shown
in Fig. 4, and a different yield surface corresponds to each region as indicated in Tables

1-8 of [5].
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F1G. 4. Regions of study.

The shape of the yield surface depends on the region of Fig. 4. Typical curves are given
in Figs. 5(a}-5(h) for & = 0-5 and for different values of § and y corresponding to each of
the eight regions of reinforcement. Circled numbers correspond to cases referred to in
the tables.

It is noted that this method gives rise to a discontinuity of deformation in the circum-
ferential direction, at the interface of the rim and the rib. Thus, for complete solutions,
the present theory should be restricted to small values of a. Otherwise, the yield surface
constitutes a lower bound.

BASIC EQUATIONS FOR THE ANALYSIS OF CYLINDRICAL SHELLS

The solution of the limit analysis problem of a cylindrical shell implies the integration
of equilibrium equations combined with the yield condition. For a uniform cross-section,
the sandwich shell approximation to the yield surface is generally used and, since it is linear,
the integration can be carried out without difficulty.

For the problem of rib-reinforced shells, however, the yield surface as developed with
the present method is nonlinear. In this case, a different approach is desirable and has
been suggested in [2]. Some details of the development must be reproduced here for
completeness.

The equations of equilibrium for a cylinder under pressure are:

m =t (10)
t+n=p (11)
where primes indicate differentiation with respect to the dimensionless axial coordinate ¢,

p is the dimensionless pressure and ¢ is the dimensionless shear force per unit length.
Introducing the parameter s used to express the yield condition, the following relations
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NOTE: Circled numbers identify cases
from tables 1to 8
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Fi6. 5. Typical yield surfaces for x = -5 and various values of fand y.

may then be easily obtained from (10} and (11):

2 =21 (p—n)——ds+1t3(so) (12)
. 1 dm

Thus substituting £ = A, the shell length, in (13), a relation between this length and the
yield pressure is obtained.
Regarding kinematic admissibility, the following strain rate-velocity relations are valid
from [6]:
By = - W
(14)

’y = — W

where w is the dimensionless radial velocity.
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The plastic potential-flow law requires that the flow vector (g4, ¢,) be normal to the
yield surface ®(n, m) = 0. Thus:
mw"+n'w = 0. (15)
Using (10), (11) and the fact that p is constant

wi" wit—wt' G
2 = = 16
( t) t? t? (16)
and finally, from (13):
1{dm
= —=|— K 17
w tht3(ds)ds+ t )]

where G and K are constants of integration.

Therefore, to prove that a given stress profile corresponds to the exact solution, it is
sufficient to show that w in (17) is of the proper sign, corresponding to an outer normal
to the yield surface, and that it satisfies the boundary conditions.

SOLUTION OF PROBLEM:
A CANTILEVER CYLINDER UNDER PRESSURE

To evaluate the effect of rib reinforcement on the load carrying capacity under constant
material volume, we examine the problem which has been solved for y = 0in [2], that of an
open-ended cantilever shell under constant pressure, as shown in Fig. 6. This may be con-
sidered as an application of limit analysis to the study of a reinforced nozzle.

A different study must be made for each of the eight regions shown in Fig. 4. We shall
consider in some detail one example for geometry parameters corresponding to region
No. 1, ie.

Pa+2y< 2

Ba—2y > 0. 18
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F1G. 6. Longitudinal section of cantilever shell.
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It is reasonabie to expect that both w and w” will be negative throughout the shell.
hence from (14), that both strain rate components will be positive. Thus the assumed stress
profile is as shown in Fig. 7 and the portion of the yield surface which must be considered
corresponds to cases 15, 7 and 6.

The boundary conditions are:

At E=0 m =0

t=90

w = —Wwg. (19)
At E=A w =0 or m=my,

w =10

Bt

and the quantities m, n, t, w and w’ are necessarily continuous at £ = and & =

@

@

®
A

FiG. 7. Stress profile for cantilever shell problem.

The relation between the axial distance ¢ and the yield pressure p* may then be obtained
from (12) and (13). If we choose the boundary condition m = gy, at £ = A, a selection
which will be confirmed later, we obtain a direct relation between the shell length A and
the yield pressure p*, involving only an integration which in general must be carried out

numerically.
It remains to be shown that the selected stress profile and the selected boundary condi-

tion at £ = A are correct.
It will be seen that in all cases the yield pressure is such that

P* > e = 7+ L {20)

Hence, from (11) and (20), t' > 0. From boundary condition (19), w is negative and ¢ is
zero at the free end. Thus, from (16), constant G is positive, and therefore :

t

»_v) >0 20
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holds throughout the shell. Since the denominator ¢ increases as £ increases, w must be a
monotonically increasing function of £. At ¢ = A, w = 0. Thus, w cannot be positive, and
from (21), (16), w’ cannot be zero at £ = A. We conclude that the velocity is of the proper
sign, and that the boundary condition m = m,,,, at the fixed end is the only possible choice.
The solution is kinematically admissible, and therefore complete.

The general form of the relation between the shell length and the pressure may be
expressed as follows :

P
A=E¢- ) giJ- {F‘(S)—~F"(¢;)+t?‘}'%(af-be)dS (22)
i=7,6,3,10 8;
where :

u® w?
F'u) = 2 {c,,a,,u —{ad,+ b,,c,,)~2—+ b,.d,,-g-}. (23)

Values of terms in (22) and (23) are given in Tables 9 and 10 of [5]. This particular form of
solution can be easily formulated on a digital computer by assuming a value of p*. The
corresponding shell length A is then obtained.

A different set of curves must of course be presented for any combination of the three
parameters a, f, y. A simpler, although slightly approximate, method of providing results
for the present problem may be based on the observation in [2] that, with y = 0, all curves
would practically coincide if the collapse pressure were replotted as a function of A, where:

- No \* A
A (RMW) N 9
The maximum moment can easily be established as follows:
(@) If (Ba+2y) <2
2& 52(12
ey = 1+,Boc(1—y)+—2——-—-—~4—+y(2+2/3+y). (25a)
{b) I (fa+2y)> 2
) fpa—2y = =2
1—n 2 2
Moy, = 2—(—a/)*+ﬂ(1+7’)+ﬁff+272' (25b)
2) If -2y < =2
2 2.2
Myax ='y2+(ﬁa+2)y+1+é~j—£-ﬁ x + 28— Bua. (25¢)

2 4

1t is therefore possible to present results with very little error for all cantilever shells as
in Fig. 8, with a particular curve for each value of y. The corresponding equation is
approximately :

— 2 ¢
) -
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FiG. 8. Approximate relation between collapse pressure and shell length for cantilever shells.

COMPARISON OF COLLAPSE PRESSURES, CONSTANT VOLUME
AND LENGTH

In order to evaluate the actual improvement, if any, which can be obtained from a rib-
reinforced shell, the cantilever shell sample problem may be considered by comparing the
results to those of a uniform shell of the same physical length L. Then, for a constant amount
of material, it is possible to find the collapse pressure ratio for any combination of para-
meters «, f and 7.

It can easily be shown that, for equal physical lengths and equal volumes, we must have
the following relation between dimensionless shell lengths A, and A, :

Az

M= )

(27}

and that the ratio of physical collapse pressures P¥ and P% is, in terms of dimensionless

quantities
PY p3 (28)
PY  p(1+7+3B/2)

where subscripts 1 and 2 refer to uniform and rib-reinforced shells respectively.
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The comparison is then carried out as follows: from selected values of the physical
quantities, the “equivalent length” for a uniform shell of radius R and thickness 2H is

L2
t = JREY (29)

The dimensionless collapse pressure for the uniform shell p¥ is obtained from [2]}.
For given parameters o, fi, 7, the corresponding dimensionless length A, for the rib-
reinforced shell is obtained from (27) and the dimensionless collapse pressure p¥ is given
by the present solution. The pressure ratio P¥/P¥, from (28}, is shown in Fig. 9 as a function
of Ay.

An optimum choice of values for « and § must be guided by physical considerations,
since theoretically « should be as small as possible and f should be rather large. Values
given in Fig. 9 are probably reasonable if the number of ribs is not too large. The only
practical “optimum” guidance from the present analysis is related to y, for which a value of
approximately 0-75 yields the best results.

It is noted that there is some improvement in the collapse pressure for rib-reinforced

I X3
P R
3r 3¢
=4 W =6
N - A ~
2k N 2k \\

i i ! L L

0 2 4 6 8 10 0 2 4 6 8 1'0
Equivalent length for uniform shell M Equivalent length for unform shetl Ny
—7z0.0 »
B ——7= 025 Ly
P —-——=7=0.5 e
3r ——7= 0.75 3r
—-—7=10
\ B:12
2F N\ sl
1 1
\—-..___.,.__
1 1 [ i J 1 (! L 1 J
0 2 4 6 8 10 0 2 4 6 8 10
Equivalent length for umform shell A, Equivalent length for umiform shell Ay
a=0.1

F16.9. Comparison between rib-reinforced and uniform cantilever shells for constant length and volume.

_ o ' ' _ s
t There is a misprint in the published solution and one should read: y = sin™! {1 Ys } .
=73
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shells only for values of A, smaller than approximately 5, corresponding to very short shells
of length slightly less than the radius.

OTHER LOADING CONDITIONS

It is clear from Fig. 9 that, from the point of view of economy of material, there is no
advantage in using longitudinal ribs for the present problem of an open cantilever cylinder
subjected to pressure, unless the length is extremely small as in a ring. A possible explana-
tion for this is that the response here is almost that of a pure membrane for L 2 R, and that
the beneficial effect of the axial moment on the limit load is no longer significant.

For very short shells, however, there was an increase in the carrying capacity which was
appreciable. While this has little practical consequence for a nozzle, it suggests that for
other loading conditions where axial bending has an important role, a design with longi-
tudinal ribs might prove beneficial.

An example which may be of interest in this respect is the problem of a circumferential
ring of pressure of intensity 2F on a shell whose ends are restrained against rotation. Without
carrying out the detailed study, it is possible to make a rough evaluation of the order of
magnitude of the increase in carrying capacity which could be generated by a rearrange-
ment of a constant amount of material as in Fig. 1.

Let us first establish an upper bound on this increase by using a rectangular “limited
interaction’ yield surface which circumscribes the exact surface, thus with maximum values
Hmaxd =7 + 1) and m,,,, . From the analysis in [6], the collapse load is then

(30)

if the shell length is at least of the order of the radius. Comparing with the uniform Tresca
collapse load F, for a uniform shell of the same material volume from [6, 7], an upper bound
to the collapse load ratio is:

(31

L R R
Fil  1.826 (1 +3+ap/2)?
where m,,, 1§ given in equations (25).

Similarly, by inscribing a rectangular yield surface of maximum values ny,,, and m,,,,
we obtain a lower bound :

& B _ 2 (nmax}z'né}axé’ (32)
F, 1-826 (1 +7 +ap/2)}

Figure 10 shows the variations of the upper bound (F,/F;)" for the geometrical para-
meters of Fig. 9. It is of interest to observe that the optimum value of y is approximately
0-75, as in the reinforced nozzle problem. For this value of y, the lower bound (F,/F;)" is
also given. These bounds are of course very far apart, and the exact solution could easily
be obtained, if required, through a numerical integration using the yield surface presently
developed and the general relation in [7]. This is not necessary here, as the bounds are
sufficient to show that an appreciable increase in the carrying capacity (between 38 per cent
and 110 per cent for 8 = 12) may be obtained by a suitable rearrangement of the material
for the problem of a circumferential ring of pressure.
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FiG. 10. Bounds on collapse load ratios for circumferential pressure ring, with constant volume of
material.
CONCLUSION

A method for the limit analysis of rib-reinforced cylindrical shells as shown in Fig. 1
has been proposed. The yield surface has been derived and the problem of an open canti-
lever shell subjected to pressure has been solved in detail.

The comparison of rib-reinforced shells with uniform shells of the same material volume
has shown that for the open cantilever shell problem there is little savings of material to be
gained by longitudinal rib-reinforcements mostly because of the negligible effect of axial
bending. It appears likely, however, that an increase in the carrying capacity may be
obtained for loading conditions such that axial bending has a predominant role, as was
observed for the circumferential ring of pressure example. An optimum arrangement of
Fig. 1 would be such that the outer rim thickness is approximately 3 of that of the inner
rim.
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AbGcTpakT—OO0CYXAaeTcs UMIAMHApUYecKas 000/104YKa ¢ NONEpPEeYHbIM CEYEHHEM, COCTOSALWIMM M3 ABYX
ONOPHBIX KOJIEU, Pa3HOM TOJILHHBI, Pa3ieIeHHBIX NPONObHBIMM pebpaMu. Onpenensercs NoBepxHOCTh
TEYEHUS, HUCOOJIL3YS METOHN OTODpaXeHus i yCiIoBusi TeKydecTd Tpecku. Onpenensercs, 3artem,
[JABJIEHHE pa3pylleHWs [ Cliydas OTKPBITOW KOHCONBHOM 060/M0YkM 1o AasiienneM. B atom
0coBOM  cnyuae, KOHCTATHPYETCs Majias JIKOHOMHMs MaTepuana IIpHd  HUCITOAB30OBAHUW  YCHJIEHUS
pebpaMM, OHHOKO MOXHO TIIONYYHTb HEKOTODPYIO JKOHOMMIO ISl APYTHX Harpy30K W KpaesbiX
YCHOBUI, TIe OCEBOM W3THbL MIPAET BAXHYIO POJib.



